

# Vitamin C Metabolomic Mapping in Experimental Diabetes With 6-Deoxy-6-Fluoro-Ascorbic Acid and High Resolution $^{19}\text{F}$ -Nuclear Magnetic Resonance Spectroscopy

Yoko Nishikawa, Barbara Dmochowska, Janusz Madaj, Jie Xue, Zhongwu Guo, Makoto Satake, D. Venkat Reddy, Peter L. Rinaldi, and Vincent M. Monnier

**Metabolomic mapping is an emerging discipline geared at providing information on a large number of metabolites as a complement to genomics and proteomics. Here we have probed ascorbic acid homeostasis and degradation in diabetes using 6-deoxy-6-fluoro ascorbic acid (F-ASA) and 750 MHz  $^{19}\text{F}$ -nuclear magnetic resonance (NMR) spectroscopy with proton decoupling. In vitro,  $\text{Cu}^{2+}$ -mediated degradation of F-ASA revealed the formation of 4 major stable degradation products at 24 hours. However, when normal or diabetics rats were injected with F-ASA intraperitoneally (IP) for 4 days, up to 20 fluorine-labeled compounds were observed in the urine. Their composition resembled, in part, metal catalyzed degradation of F-ASA and was not explained by spontaneous degradation in the urine. Diabetes led to a dramatic increase in urinary F-ASA loss and a relative decrease in most other urinary F-compounds. Diabetes tilted F-ASA homeostasis toward oxidation in liver ( $P < .01$ ), kidney ( $P < .01$ ), spleen ( $P < .01$ ), and plasma ( $P < .01$ ), but tended to decrease oxidation in brain, adrenal glands, and heart. Surprisingly, however, besides the major oxidation product fluoro-dehydroascorbic acid (F-DHA), no F-ASA advanced catabolites were detected in tissues at 5  $\mu\text{mol/L}$  sensitivity. These findings not only confirm the key role of the kidney in diabetes-mediated loss of ascorbic acid, but demonstrate that only selected tissues are prone to increased oxidation in diabetes. While the structure of most degradation products needs to be established, the method illustrates the power of high resolution  $^{19}\text{F}$ -NMR spectroscopy for the mapping of complex metabolomic pathways in disease states.**

© 2003 Elsevier Inc. All rights reserved.

**M**ETABOLOMIC MAPPING is a rapidly evolving “post-genomic” science whose goal is to develop integrated databases of metabolite concentrations across human and research animal populations. It provides an invaluable tool for determining the distributions of metabolite concentrations in humans, the relationship of these metabolite concentrations to disease, and the extent to which nutrition can modulate metabolite concentrations.<sup>1,2</sup> While various techniques are being developed toward that goal, we have used below nuclear magnetic resonance (NMR) spectroscopy to assess the catabolic pathways of ascorbic acid *in vivo*. One advantage of this technique is that it can detect and quantitate individual compounds without prior separation, assuming these contain an isotope whose abundance is present in sufficiently large concentrations for detection. NMR applications for metabolomics have been recently reviewed by Reo.<sup>3</sup>

L-ascorbic acid (ASA) plays a key role in the oxidant defense of the body by trapping of free radicals.<sup>4</sup> Evidence suggests that oxidative stress is increased in diabetes.<sup>5,6</sup> ASA level in plasma

and tissue of diabetic animals and humans is lower than normal,<sup>7,8</sup> and this abnormality may contribute to an acceleration of oxidative damage in diabetes, leading to diabetic complications, such as cardiovascular and renal disease. The administration of vitamin C might have therapeutic benefits for diabetic individuals,<sup>7,9</sup> but ASA can also have prooxidant effects depending on the milieu.<sup>10,11</sup> Despite considerable information on plasma levels of ascorbic acid in diabetes, little information on its homeostasis and degradation in the tissue is available. This lack of knowledge, in part, reflects the technical difficulty of making comprehensive measurements of all ASA degradation products.

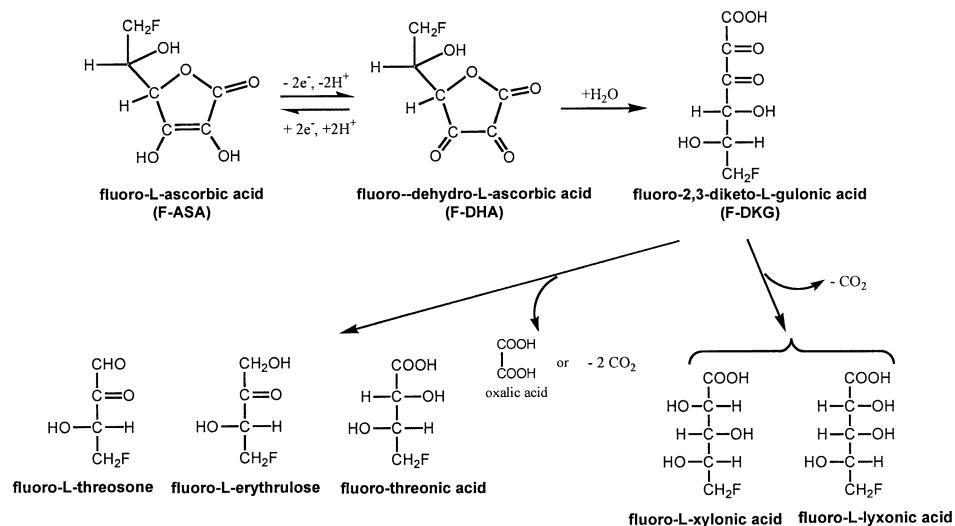
ASA is oxidized into dehydro-L-ascorbic acid (DHA) via monodehydro-L-ascorbic acid. Normally DHA is quickly reduced to ASA in the cell. Under oxidative stress, DHA accumulates and undergoes irreversible delactonization to diketo-L-gulonic acid (DKG).<sup>12,13</sup> The latter undergoes further degradation (Fig 1) into carbonyl compounds, such as L-xylosone,<sup>14</sup> L-erythrulose,<sup>15</sup> and L-threose,<sup>16</sup> although the existence of some of these compounds has been contested.<sup>15</sup> The degradation compounds are similar to those observed during degradation of sugars and are thought to promote the formation of advanced glycation end-products (AGEs) by reacting with proteins (Maillard reaction).<sup>14,17,18</sup> Some of the products that have been identified *in vivo* include pentosidine,<sup>19</sup> carboxymethyl-lysine (CML),<sup>20</sup> vesperrlysine A,<sup>21</sup> and oxalic acid monoamide.<sup>22</sup> It is likely that ASA participates in the formation of these compounds, especially in tissues in which ASA concentrations are high<sup>16,19,23,24</sup> and especially in end-stage renal disease (ESRD) in which oxidative events are dramatically increased.<sup>25</sup>

Utilizing diabetes as a paradigm of cellular oxidant stress, the study below was initiated with the goal of investigating the extent to which advanced ascorbic acid degradation takes place *in vivo* and how this degradation is affected by intracellular oxidant stress. One critical question, for example, is whether

---

From the Institute of Pathology, and Departments of Biochemistry and Chemistry, Case Western Reserve University, Cleveland, OH; Department of Chemistry, University of Gdansk, Poland; and the Department of Chemistry, University of Akron, Akron, OH.

Submitted August 26, 2002; accepted January 23, 2003.


Supported by the Diabetes Center of Excellence National Institutes of Health (NIH) Grant No. DK57733 and a mentorship grant from the American Diabetes Association to V.M.M., and in part by NEI Grant No. 07099. B.D. was a recipient of a Fellowship from the Juvenile Diabetes Foundation International.

Address reprint requests to Vincent M. Monnier, MD, Institute of Pathology, Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106.

© 2003 Elsevier Inc. All rights reserved.

0026-0495/03/5206-0017\$30.00/0

doi:10.1016/S0026-0495(03)00069-6



**Fig 1. Possible degradation pathways of F-ASA.** Except for oxalic acid, most degradation compounds are expected to have a fluorine atom in the original position 6 of ASA and thus to be detectable by <sup>19</sup>F-NMR spectroscopy.

ascorbic acid degradation in diabetes results from metal or nonmetal catalyzed oxidation and how this is reflected in the composition of the degradation products distal from dehydroascorbic acid. This question can only be addressed with isotopically-labeled ascorbic acid. However, the use of the commercially available L-[1-<sup>14</sup>C]ASA to study these questions is inadequate because the labeled atom is lost in the form of <sup>14</sup>CO<sub>2</sub> at the first stage of DHA degradation. A similar approach using uniformly radiolabeled ascorbic acid would be extremely expensive and would still require tedious chromatographic methods to identify the degradation products. While recent studies have been performed in vitro with <sup>13</sup>C-labeled ascorbic,<sup>26</sup> the sensitivity of this isotope was deemed insufficient for in vivo studies by comparison with <sup>19</sup>F, which is about 10 times more sensitive. We have therefore evaluated 6-deoxy-6-fluoro-ascorbic acid (F-ASA) and <sup>19</sup>F-NMR spectroscopy as tools for in vivo studies of ascorbate catabolism.<sup>27</sup> Preliminary studies showed that F-ASA was structurally identical with ascorbic acid and behaved similarly in terms of degradation kinetics.<sup>27</sup> These studies also showed that 5 to 7 metal catalyzed oxidation products of F-ASA could be observed by <sup>19</sup>F-NMR without separation by chromatography. Below, we have applied this fluorinated form of ASA to investigate the effects of diabetes on ascorbic acid homeostasis and obtain insight into the number and type of degradation products that are expected to accumulate, if at all, in normal and diabetic tissues.

## MATERIALS AND METHODS

### Materials

F-ASA was synthesized as previously reported.<sup>27</sup> D<sub>2</sub>O, phosphate buffer tablets (pH 7.4) and 6-deoxy-6-fluoro-D-glucose (F-glucose) were from Sigma-Aldrich (St Louis, MO). Other chemicals of the highest analytical grade available were from Fisher Scientific (Pittsburgh, PA).

### NMR Spectroscopy

<sup>13</sup>C 188-MHz and <sup>19</sup>F 705-MHz NMR spectra were obtained on a Varian Unity Plus-750 MHz spectrometer equipped with a Varian 5-

mm <sup>1</sup>H/<sup>13</sup>C/<sup>19</sup>F PFG triple resonance probe (hardware configured for <sup>19</sup>F detection and <sup>1</sup>H/<sup>13</sup>C decoupling). Data processing was performed on a Sun SPARC station-10 (Sun Microsystems, St Clara, CA) using Varian (Palo Alto, CA) VNMR software. The 1-dimensional <sup>19</sup>F spectra were measured using 16.8  $\mu$ s ( $\sim 90^\circ$ ) <sup>19</sup>F pulse width, 0.8-second acquisition time, 256 to 512 transients with a relaxation delay of 1 second. The data were weighted with 2-Hz exponential line broadening and zero-filled before Fourier transformation. Two-dimensional (2D) <sup>1</sup>H-decoupled <sup>19</sup>F-<sup>13</sup>C Hetero Nuclear Single Quantum Coherence (2D-gHSQC, from Varian pulse sequence library) spectra were measured at 25°C. A sweep width of 9,172 Hz in <sup>19</sup>F dimension and 32,025 Hz in <sup>13</sup>C dimension were used. The acquired data consists of 1,834 data points for <sup>19</sup>F and 272 data points for <sup>13</sup>C dimension, with 96 transients for each increment. The data were weighted with shifted sine bell window functions in both dimensions and zero-filled with 4,096  $\times$  2,048 data points before the final 2D transformation. An internal standard consisting of F-D-glucose in D<sub>2</sub>O was added to be 0.1 mmol/L immediately before the measurement at 25°C. For calibration, the chemical shift of the downfield furanose conformer of F-glucose was set at -219 ppm based on the shift of CCl<sub>3</sub>F ( $\delta_F = 76$  ppm) as the external standard. The other F-glucose signal at -218.3 ppm likely corresponds to pyranose conformer as judged by the 60% to 40% ratio of these 2 signals. For quantitation, the sum of both signals was assumed to represent 0.1  $\mu$ mol/L or 1.0 mmol/L fluoro compound, as described for each experiment, respectively.

### F-DKG Analysis

The F-DKG potassium salt was synthesized from F-ASA using the same method as for the DKG potassium salt<sup>28,29</sup> and obtained as a white hygroscopic powder that was stored at -55°C before NMR analysis. The F-DKG potassium salt was analyzed by <sup>13</sup>C-NMR, <sup>19</sup>F-NMR, and 2D-NMR between <sup>13</sup>C and <sup>19</sup>F to confirm its structure.

### F-ASA Degradation In Vitro

F-ASA was dissolved in phosphate-buffered saline (PBS, pH 7.4) that was treated with Chelex-100 resin according to the manufacturer's protocol (BioRad, Hercules, CA) to remove metal ions. For the oxidative experiment of 1 mmol/L F-ASA with 10  $\mu$ mol/L CuCl<sub>2</sub>, 50  $\mu$ L CuCl<sub>2</sub> solution (0.4 mmol/L) was added to 1.8 mL PBS, followed by 0.2 mL F-ASA (10 mmol/L). The solution was incubated at 37°C for 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 24 hours, and 4 days. After the incubation, 50  $\mu$ L EDTA solution (2.1 mmol/L) was added to

stop the reaction. The oxidative experiment of F-ASA without  $\text{CuCl}_2$  was performed the same way as for the incubation of F-ASA with  $\text{CuCl}_2$ , but 50  $\mu\text{L}$  distilled water was added instead of 50  $\mu\text{L}$   $\text{CuCl}_2$  solution (0.4 mmol/L). After the incubation, 50  $\mu\text{L}$  EDTA solution (2.1 mmol/L) was added. For the time 0 sample, 50  $\mu\text{L}$  EDTA solution (2.1 mmol/L) was added before addition of F-ASA. To all incubated samples were added 1/4 volume of 20% metaphosphoric acid (MPA), and the pH was adjusted to pH 3.0 with aqueous HCl, and measured by  $^{19}\text{F-NMR}$  with proton decoupling. Some samples were incubated for 24 hours with and without  $\text{CuCl}_2$  and were subjected to  $^{19}\text{F-NMR}$  without proton decoupling.

#### Animals and Diet

Male Sprague-Dawley rats (Charles River, Wilmington, MA) weighing about 150 g were obtained for all studies. They were randomly separated into 2 groups, consisting of normal (N, n = 9) and diabetic rats (DB, n = 15). DB was induced by intravenous injection of streptozotocin (STZ; 65 mg/kg body weight) at 2 months of age. Two rats per cage were maintained on rotating 12-hour dark/light cycle at an ambient temperature of about 24°C and were provided with free access to a diet poor in vitamin C (Rodent AIN-76A; Bio-Serv, Frenchtown, NJ). Blood glucose and glycohemoglobin (GHb) levels were determined 3 months after the STZ injection. The average  $\pm$  SD of blood glucose levels and GHb in N (n = 9) and DB (n = 15) were  $3.77 \pm 0.37$  and  $17.37 \pm 3.27$  mmol/L and GHb(%) =  $3.14 \pm 1.10$  and  $20.88 \pm 2.63$ , respectively. F-ASA was dissolved in saline and filtered sterile immediately before injection to rats.

#### Plasma Preparation

At 25 weeks of age and 4 months of diabetes F-ASA was injected IP to N (n = 7) and DB rats (n = 9) at a dosage of 4 mg/rat/d for 5 days. Mean  $\pm$  SD body weights were  $531.94 \pm 28.23$  g and  $307.01 \pm 37.09$  g, respectively. Blood (<0.5 mL) was collected from the tail vein without anesthesia 30 minutes after the last injection of F-ASA. Whole blood was centrifuged for 20 minutes at  $1,500 \times g$  (4°C) and plasma was separated as supernatant. To plasma (200  $\mu\text{L}$ ) was added 50  $\mu\text{L}$  10% MPA, and centrifugation was performed for 10 minutes at  $10,000 \times g$  (4°C). The supernatant was filtered using 0.45- $\mu\text{m}$  syringe filters. The sample was stored at  $-80^{\circ}\text{C}$  until the measurement by  $^{19}\text{F-NMR}$ .

#### Tissue Preparation

At 33 weeks of age and 6 months of diabetes duration, rats (n = 6 for N and DB) were injected with F-ASA (4 mg/rat) twice per day for 5 days. They were killed by cardiac puncture under anesthesia with pentobarbital (50 mg/kg body weight) 15 hours after the last injection of F-ASA. Liver, spleen, kidney, adrenal glands, heart, lung, and brain were removed, weighed, and quickly frozen. Body and tissue weights are shown in Table 1. Tissues that were stored at  $-80^{\circ}\text{C}$  were homogenized in 1 vol 5% (vol/wt) MPA with cooling on ice water. The samples were centrifuged for 10 minutes at  $10,000 \times g$  (4°C). The supernatant was filtered and measured by  $^{19}\text{F-NMR}$ .

#### Urine Studies

F-ASA was injected to N (n = 5) and DB (n = 6) (25 weeks old, 4 months after onset of diabetes) at a dosage of 4 mg/rat/d for 4 days by IP. Using metabolic cages, urine was collected for 24 hours into plastic tubes containing 1 mL 20% MPA starting 30 minutes after the last injection of F-ASA. Each sample was freeze-dried and adjusted to 2 mL with  $\text{D}_2\text{O}$ . After filtration over 0.45- $\mu\text{m}$  filters, they were stored at  $-80^{\circ}\text{C}$  until measurement by  $^{19}\text{F-NMR}$ . For the recovery determination of total fluoro-compounds into urine, F-ASA was injected to N (n = 5) and DB (n = 6) (33 weeks old, after 6 months of diabetes

**Table 1. Body and Tissue Weights of Normal and Diabetic Rats**

|                | Normal (g)                 | Diabetic (g)                |
|----------------|----------------------------|-----------------------------|
| Body weight    | $590.67 \pm 23.24$ (n = 6) | $287.71 \pm 28.42$ (n = 7)* |
| Brain          | $1.866 \pm 0.205$ (n = 5)  | $1.860 \pm 0.172$ (n = 5)   |
| Adrenal glands | $0.083 \pm 0.034$ (n = 4)  | $0.067 \pm 0.006$ (n = 6)   |
| Liver          | $14.697 \pm 1.303$ (n = 6) | $12.229 \pm 2.336$ (n = 4)† |
| Heart          | $1.548 \pm 0.084$ (n = 5)  | $1.227 \pm 0.182$ (n = 6)*  |
| Spleen         | $0.640 \pm 0.031$ (n = 5)  | $0.273 \pm 0.099$ (n = 6)*  |
| Kidney         | $1.537 \pm 0.110$ (n = 5)  | $1.894 \pm 0.275$ (n = 5)†  |

NOTE. Body weights were measured before sacrifice. Results are expressed as means  $\pm$  SD. \* $P < .01$ ,

† $P < .05$  compared with normal rats.

in DB) at a dosage of 4 mg/rat/d for 4 days by IP. The urine of N and DB was collected into plastic tube containing 1 mL 20% MPA from 30 minutes after the last injection of F-ASA until 24 hours. The urine was freeze-dried and prepared for the measurement by  $^{19}\text{F-NMR}$  as above.

#### Effect of Urine on F-ASA Degradation In Vitro

F-ASA (1 mmol/L) was dissolved in normal rat urine (2 mL), incubated at  $37^{\circ}\text{C}$  for 1 day and filtered with a 0.45- $\mu\text{m}$  syringe filter prior to assay for degradation by  $^{19}\text{F-NMR}$  spectroscopy with proton decoupling.

#### Statistical Analysis

Difference of means between diabetic and controls was assessed using Student's *t* test.

## RESULTS

#### F-2,3-Diketogulonic Acid Assignment

The F-DKG potassium salt was synthesized following the procedure in the literature.<sup>28,29</sup> Some minor contaminants were observed in the F-DKG potassium salt that was synthesized as white powder, but the chemical shifts of F-DKG in  $^{13}\text{C-NMR}$  and  $^{19}\text{F-NMR}$  were identified by 2D-NMR between  $^{13}\text{C}$  and  $^{19}\text{F}$ . The chemical shifts were  $\delta_{\text{F}} = -213.90$  ppm,  $\delta_{\text{C}} = 172.94$  (C1), 101.94 (C2), 100.44 (C3), 74.85 (C3), 78.68 (C4), 83.53 (C6) ppm. The chemical shifts of F-DKG in the  $^{13}\text{C-NMR}$  spectrum were very similar to DKG.<sup>30</sup>

#### Kinetics of F-ASA Degradation Under Oxidative Conditions

Figure 2A shows the proton decoupled NMR spectra of F-ASA undergoing  $\text{Cu}^{2+}$  catalyzed degradation in PBS as a function of time. The kinetics data are plotted in Fig 2B. F-ASA was completely degraded within 2 hours of incubation. From the spectrum of the sample incubated for 96 hours, 4 very stable, yet unidentified degradation compounds from F-ASA ( $\delta_{\text{F}} = -211.55, -212.45, -213.31, -214.20$  ppm) were observed. The 2 compounds at  $-211.55$  and  $-214.18$  ppm were degradation products formed at a late stage in the oxidation of F-ASA. On the other hand, compounds such as those at  $-212.19$  and  $-214.0$  ppm (F6 at 15, 30, and 60 minutes) and  $-218.2$  ppm (at 30 and 60 minutes) were clearly intermediate compounds. Figure 2B (inset) shows that the major stable degradation compound accounting for 30% of total F-ASA was at  $-212.45$  ppm.

The kinetics of F-ASA degradation were compared with those of F-DHA under identical experimental conditions to find

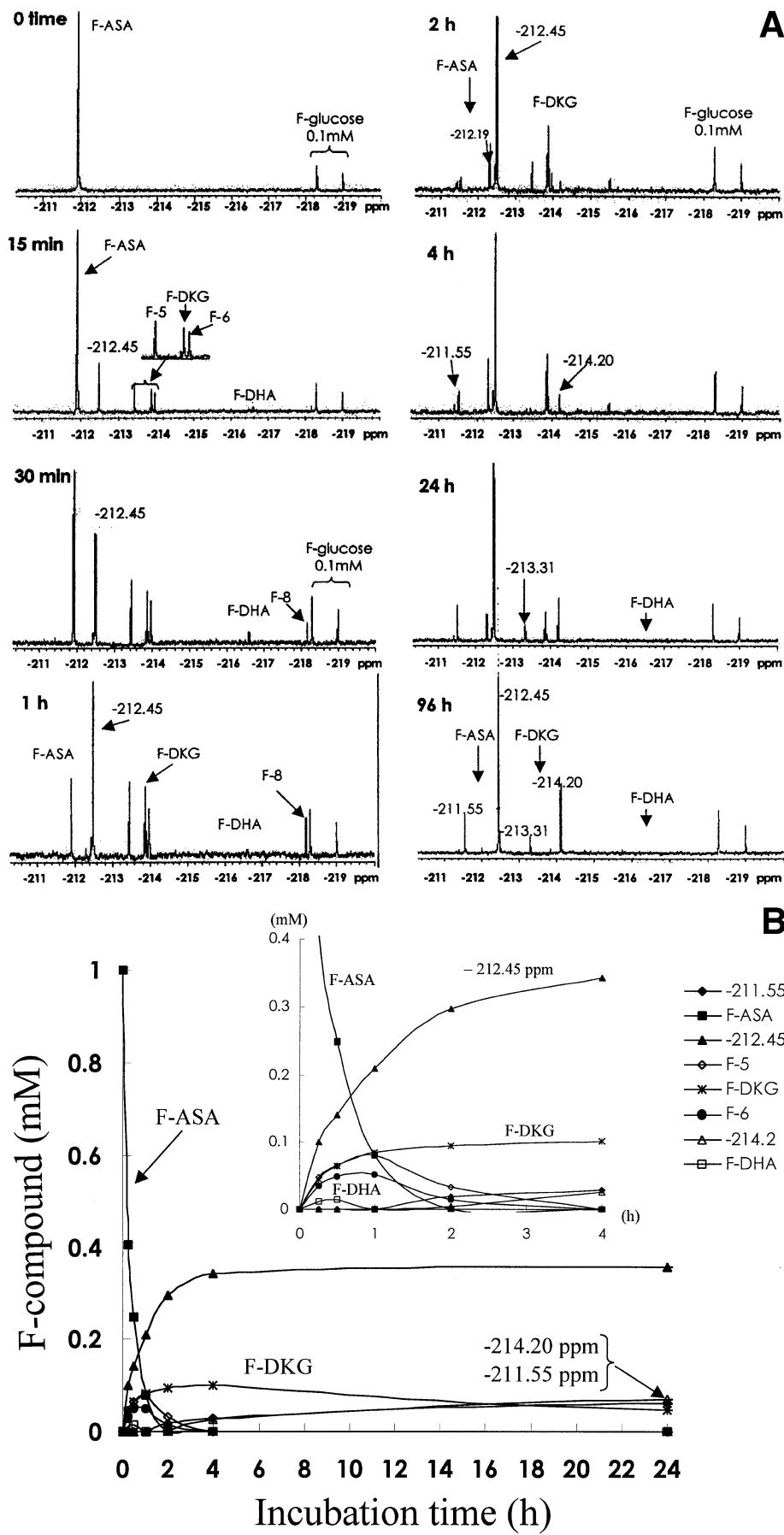
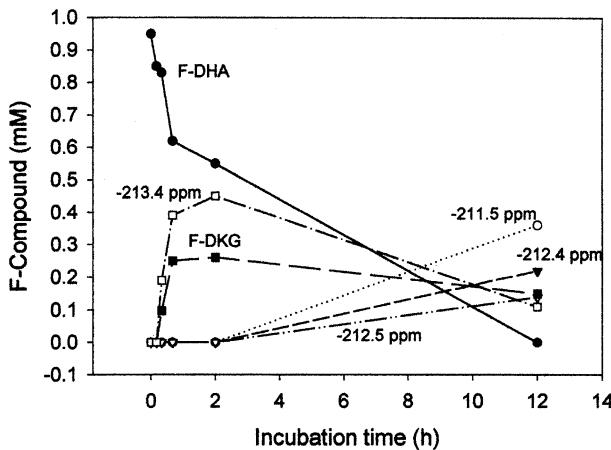




Fig 2.  $^{19}\text{F-NMR}$  spectra showing the *in vitro* kinetics of F-ASA degradation and formation of F-degradation compounds. F-ASA (1 mmol/L) was incubated in PBS (pH 7.4) containing 10  $\mu\text{mol/L}$   $\text{CuCl}_2$  at 37°C for 0 minute, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 24 hours, and 4 days. (A) NMR spectra. (B) Quantitative analysis based on the added internal standard (0.1 mmol/L 6-F-glucose).



**Fig 3. In vitro kinetics of F-DHA degradation and formation of F-degradation compounds.** F-DHA (1 mmol/L) was incubated in PBS (pH 7.4) containing 10  $\mu$ mol/L CuCl<sub>2</sub> at 37°C for 0 minute, 10 minutes, 20 minutes, 40 minutes, 120 minutes, and 12 hours.

out if the products formed were identical (Fig 3). To our surprise however, while the major compound from F-ASA was the unknown compound at -212.4 ppm, the major F-DHA degradation product was a compound at -213.4 ppm. This compound appeared to be progressively converted into the -211.5 and/or -212.4 ppm compounds, but only very slowly. However, because the -212.4 ppm compound formed rapidly from F-ASA, this experiment clearly suggests the presence of a novel F-ASA degradation pathway that is not dependent on F-DHA formation.

#### Body and Tissue Weights

Table 1 shows body and tissue weights of N and DB at sacrifice. The body weight of N was about twice as high as in DB. Whereas the weights of brain and adrenal glands were not significantly different between N and DB, liver weight was significantly lower and that of the kidney was significantly higher in DB ( $P < .05$ ). Surprisingly, both heart and spleen weights from DB were much smaller than those of N ( $P < .01$ ).

#### Concentration of F-ASA and F-DHA in Plasma and Tissues

Rats were killed and their tissues were taken 15 hours after the last injection of F-ASA (2  $\times$  4 mg/rat/d, for 5 days). Based on previous reports suggesting that plasma ascorbate levels are low in diabetic rats,<sup>31</sup> it was decided to inject them with the same total dose of F-ASA as the control rats, ie, approximately a twice higher dose per body weight, to ensure the highest possible tissue levels. Figure 4 shows typical <sup>19</sup>F-NMR spectra of the tissue samples. All samples were measured with proton decoupling, and had to be scanned for at least 30 minutes to detect F-ASA degradation products that were expected only in small concentrations. Under such conditions, the smallest visible signal in a spectrum corresponded to a concentration of approximately 5  $\mu$ mol/L F-compound based on the internal standard consisting of added 100  $\mu$ mol/L 6-F-D-glucose. The NMR signals for the latter were split into 2 peaks correspond-

ing to the expected pyranose and fyranose conformers present in 60% to 40% ratios, respectively.

Table 2 summarizes in quantitative form the data shown in Fig 4. The concentration of total F-ASA in liver, heart, brain, kidney, and spleen was statistically not different between N and DB. On the other hand, the total F-ASA concentration was highest in adrenal glands and more than twice higher in DB than in N ( $P < .01$ ). The concentration of total F-vitamin C in plasma 30 minutes after the injection of F-ASA was much lower in DB than in N (42.24  $\pm$  16.38  $\mu$ mol/L (N) v 27.00  $\pm$  9.92  $\mu$ mol/L (DB) ( $P < .05$ ) despite lower body weight. Absolute F-ASA levels were also significantly lower in kidney, spleen, and plasma, but not in heart, brain, and adrenal glands. The ratio of F-DHA to F-ASA varied considerably among individual tissue. Figure 5 shows the percentage of oxidized F-ASA ie the F-DHA to total F-vitamin C (F-ASA + F-DHA) ratio, a parameter reflecting either oxidant stress or low DHA reduction capacity. F-ASA was kept almost entirely in its reduced form in liver, brain, and adrenal glands of N and DB, but the liver of DB was much more tilted toward oxidation than N ( $P < .01$ ). On the other hand, oxidation of F-ASA was increased in heart in both N and DB, but diabetes had no additional effect. Levels of F-ASA were also significantly worse in plasma ( $P < .05$ ), kidney, and spleen (both,  $P < .01$ ) from diabetic rats. Surprisingly, except for F-DHA, no other degradation products were detected at about 5  $\mu$ mol/L sensitivity in any tissue or plasma samples of N and DB.

#### Urinary Elimination

Urine was collected into metaphosphoric acid for 24 hours starting 30 minutes after the last injection of F-ASA (4 mg/rat/d for 4 days) at 25 weeks of age (after 4 months of diabetes). Figure 6 shows typical <sup>19</sup>F-NMR spectra of deproteinized N and DB urine. The main fluorodegradation compounds in urine from N and DB were much the same and included F-DKG, compounds F-1 to F-7, but very little F-DHA, especially in diabetic rat. The signal of F-ASA floated from -211.9 ppm to about -212.2 ppm compared with the samples in which F-ASA was incubated in PBS (Fig 2A). The signals of F-ASA in all urine samples were confirmed by addition of F-ASA. The quantity of total fluoro-compounds from F-ASA eliminated into urine was 4.19  $\pm$  0.38  $\mu$ mol/24 hours (N) v 8.93  $\pm$  1.42  $\mu$ mol/24 hours (DB). After 24 hours, the recovery of F-ASA injected IP was 18.6% (N) and 39.7% (DB). Thus, the urinary loss of F-ASA in DB was much worse than in N ( $P < .05$ ). Interestingly, it even appears that the <sup>19</sup>F-NMR pattern of urinary products seen in DB is somewhat simpler than that of normal rats in that several minor signals between F-4 and F-7 are missing. This could be the result of hyperfiltration or the impaired ability of the diabetic kidney to perform certain detoxification reactions. Using the data in Table 2 and Fig 7, and an average 24-hour urinary volume of 8 and 50 mL that was recorded in N and DB, respectively, the F-ASA clearances in N and DB mice were found to be 0.016 and 0.11 mL/min, respectively, ie, 6.8-fold higher in diabetes.

#### F-ASA Incubation in Urine

Finally, experiments were performed to investigate whether the pattern of the observed urinary products from diabetic and

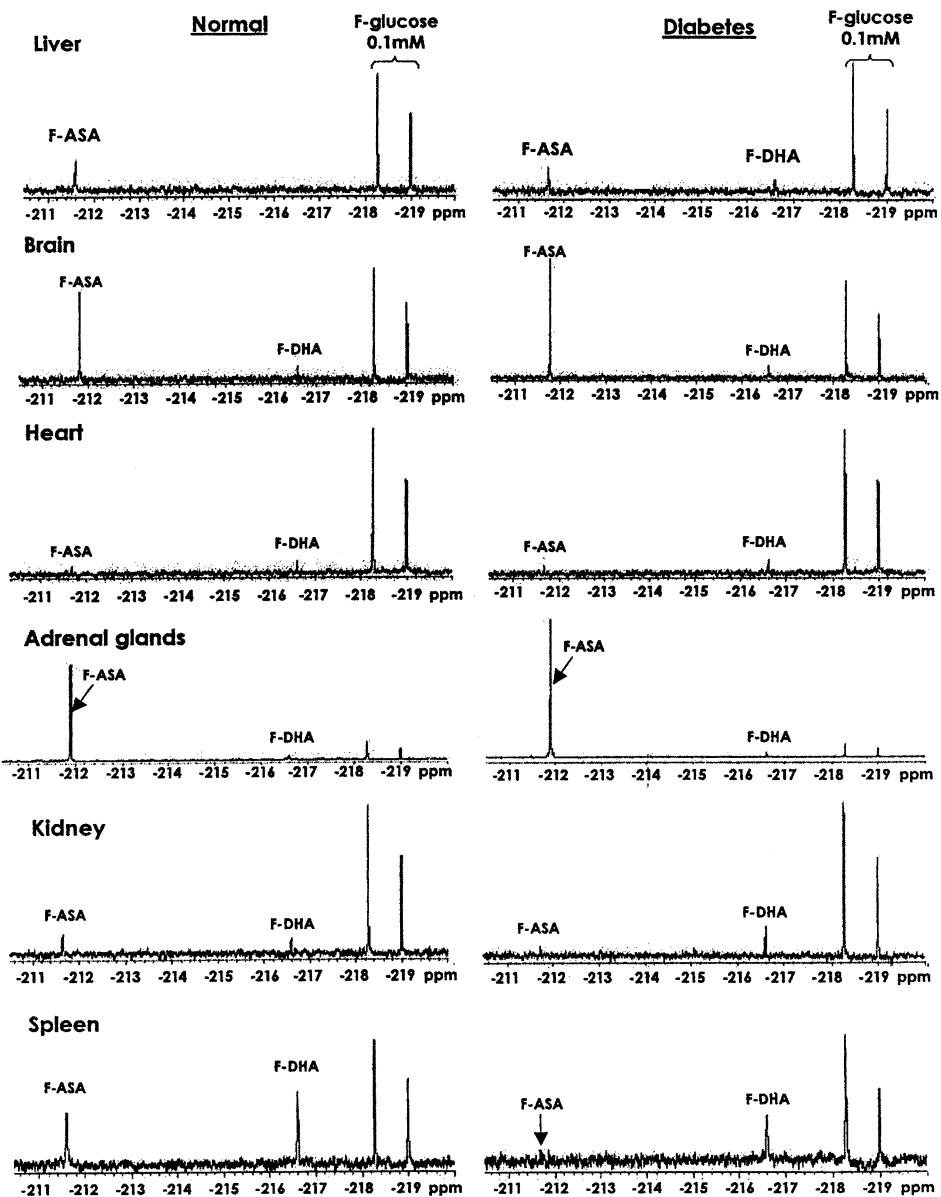



Fig 4. Typical  $^{19}\text{F}$ -NMR spectra of normal and diabetic rat tissues. All samples were measured for 30 minutes by  $^{19}\text{F}$ -NMR with proton decoupling. 6-F-Glucose (0.1 mmol/L) was added as the internal standard.

normal rats resembled primarily that of metal or nonmetal catalyzed ascorbic acid degradation. Figure 8 shows the  $^{19}\text{F}$ -NMR spectra of F-ASA incubated for 24 hours in N urine to mimick the effects of urine itself on F-ASA degradation. F-ASA in N urine was completely degraded into essentially a single product at  $-212.45$  ppm. This peak was also the dominant peak in F-ASA that underwent  $\text{Cu}^{2+}$  catalyzed degradation (Fig 2A, Fig 8) and likely corresponds to F-3 in urine from normal and diabetic rats (Fig 6). However, it is clear that none of the fluorodegradation compounds detected in N and DB urine after IP injection of F-ASA (F-1, F-2, F-3, F-5, F-6, and F-7) were present in urine that was left standing for 24 hours with 1 mmol/L F-ASA. Thus, it is apparent that the signals observed in urine from diabetic and normal rats did not originate from in situ degradation of F-ASA during the 24-hour collection, and therefore must be the result of biologic degra-

dation. Furthermore, the pattern of urinary F-ASA degradation products has some features in common with metal catalyzed degradation (F-3, F-5, F-6, F-DKG), while others are quite different (F-1, F-2, F-4) and may represent the effects of reductases and oxidases onto intermediate degradation products of F-ASA.

## DISCUSSION

The need to assay a large number of metabolites as a complement to genomics and proteomics is expected to grow dramatically in coming years. In that regard, the utilization of isotopically labeled ASA, such as 6-deoxy-6-fluoro ascorbic acid, has for the first time allowed us to explore in a comprehensive manner ASA homeostasis and degradation in an animal

Table 2. F-ASA and F-DHA Concentration in Normal and Diabetic Rat Tissues and Plasma Calculated From <sup>19</sup>F-NMR Spectra

|                | F-ASA            | F-DHA         | Total F-ASA      |
|----------------|------------------|---------------|------------------|
| Liver          |                  |               |                  |
| N              | 4.80 ± 1.20      | N.D.          | 4.80 ± 1.20      |
| DB             | 4.05 ± 0.71      | 0.77 ± 0.35*  | 4.83 ± 0.67      |
| Brain          |                  |               |                  |
| N              | 10.10 ± 1.80     | 0.81 ± 0.13   | 10.91 ± 1.81     |
| DB             | 12.45 ± 3.40     | 0.72 ± 0.45   | 13.17 ± 4.37     |
| Adrenal glands |                  |               |                  |
| N              | 154.77 ± 26.86   | 8.91 ± 1.97   | 163.68 ± 28.64   |
| DB             | 372.61 ± 121.30† | 15.49 ± 7.17  | 388.10 ± 126.53† |
| Heart          |                  |               |                  |
| N              | 0.30 ± 0.20      | 0.74 ± 0.17   | 1.04 ± 0.14      |
| DB             | 0.56 ± 0.54      | 0.72 ± 0.44   | 1.29 ± 0.60      |
| Kidney         |                  |               |                  |
| N              | 4.62 ± 1.34      | 4.70 ± 1.59   | 9.32 ± 2.17      |
| DB             | 0.97 ± 1.36*     | 7.30 ± 4.33*  | 8.27 ± 4.71      |
| Spleen         |                  |               |                  |
| N              | 1.45 ± 0.34      | 0.67 ± 0.17   | 2.12 ± 0.44      |
| DB             | 0.48 ± 0.29*     | 1.41 ± 0.24*  | 1.89 ± 0.29      |
| Plasma         |                  |               |                  |
| N              | 25.33 ± 14.65    | 16.91 ± 9.65  | 42.24 ± 16.39    |
| DB             | 9.55 ± 11.76†    | 17.45 ± 11.05 | 27.00 ± 9.92†    |

NOTE. Tissue:  $\mu\text{mol}/100\text{ g}$  tissue weight; plasma:  $\mu\text{mol}/\text{L}$ .\* $P < .01$ ,† $P < .05$  with normal rats.

model of intracellular oxidant stress, ie, the streptozotocin diabetic rat. The structure of F-ASA and its oxidation kinetics by copper ion were very similar to those of native ASA.<sup>27</sup> Like ASA, F-ASA was degraded into F-DHA, F-DKG, and other compounds (Fig 2), and F-ASA was the major form of vitamin C that accumulated in adrenal glands<sup>32</sup> (Table 2).

Obviously, one major strength of the approach used in this study is that all fluorinated products could be assayed and quantitated simultaneously with minimal loss or alteration due to sample processing. One potential disadvantage, however, is that the fluorine in position 6 may interfere with the biology of F-DHA. Studies by Rumsey et al<sup>33</sup> have shown that ASA

fluorinated in position 6 is an effective inhibitor of ASA transport, and that F-ASA is taken up into cells by a sodium-dependent ASA transporter. In contrast, F-DHA is unable to form a stable cyclic hemiketal structure, thus preventing its uptake by GLUT1 or GLUT3 transporters and slightly reducing its half-life compared with native DHA.<sup>27</sup> However, we have demonstrated in the lens that F-DHA, like F-ASA, is also taken up by a sodium-dependent transporter, most likely SVCT2 and immediately and quantitatively reduced to F-ASA, provided the cellular redox system is intact.<sup>34</sup> Thus, because both compounds are taken up by the same transporter, the tissue F-DHA/F-ASA ratio is expected to accurately reflect the cellular redox

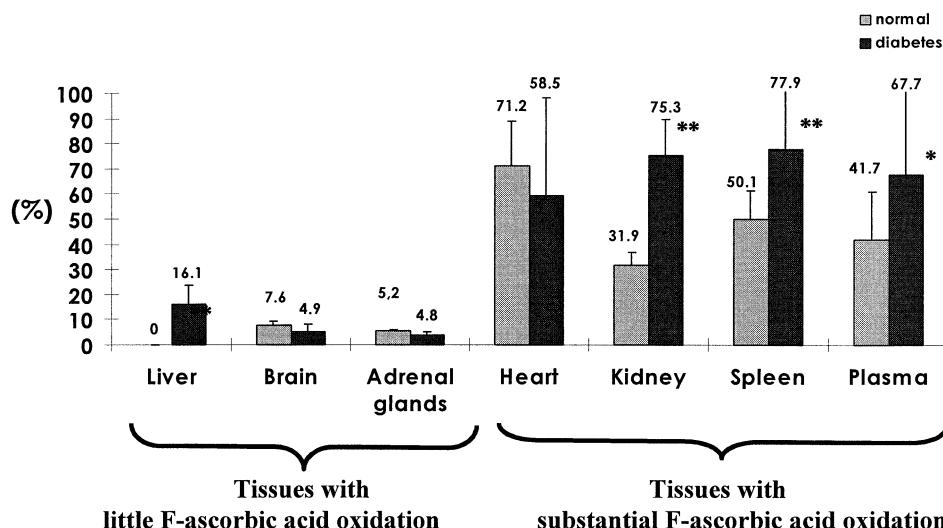
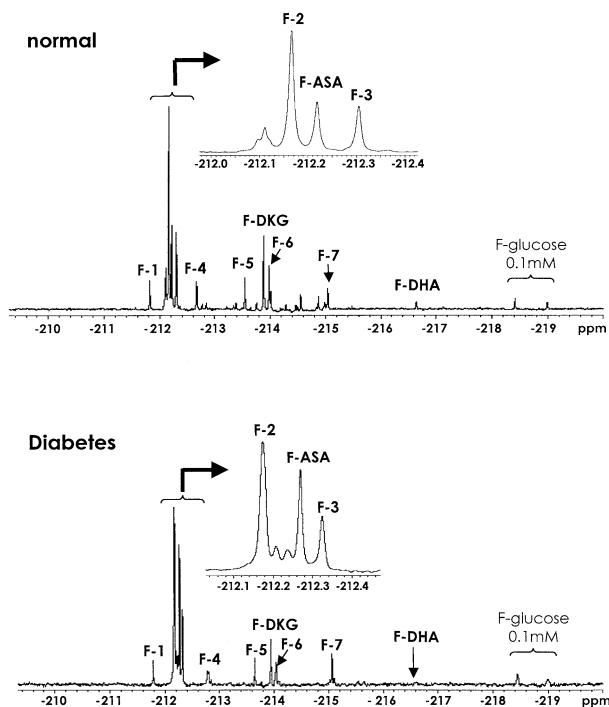
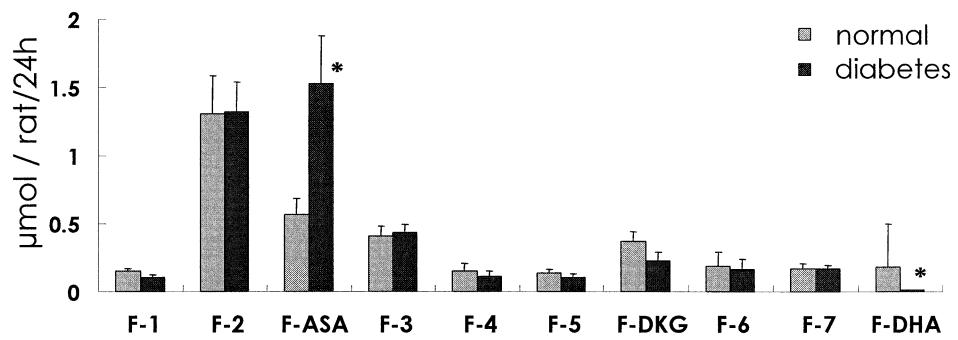




Fig 5. The mean percentage  $\pm$  SD of F-DHA to total F-ASA (F-ASA + F-DHA) in tissues and plasma. \*\* $P < .01$ , \* $P < .05$  with normal rats. The numbers above the bars indicate the percentage in numeric form.

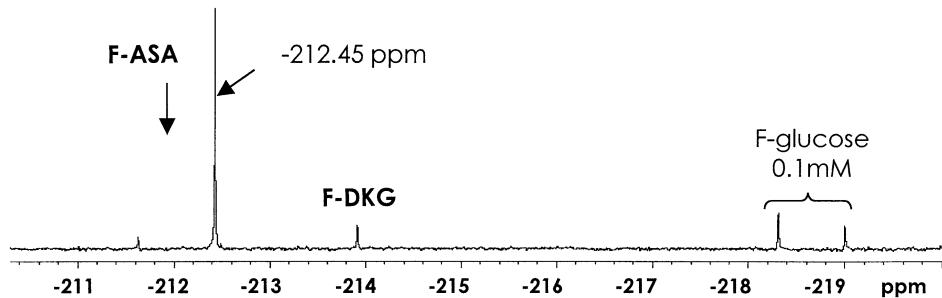


**Fig 6.** Typical  $^{19}\text{F}$ -NMR spectra of normal and diabetic rat urine. Normal and diabetic rats were injected F-ASA (4 mg/d/rat) for 4 days before urine collection. Urine was collected into metaphosphoric acid for 24 hours starting 30 minutes after the last injection of F-ASA. The main degradation products of F-ASA are labeled F1 to F7.

state of ascorbic acid, regardless of whether F-DHA is taken up or formed from in situ oxidation of F-ASA.


Our data confirm observations obtained with other methods on the effects of diabetes on plasma and kidney levels of ASA in rats.<sup>7,8,35,36</sup> Most interestingly, despite injecting a higher dose of F-ASA per unit of body weight to diabetic than control rats, F-ASA plasma levels 30 minutes after injection were much lower in diabetic than normal rats, while plasma F-DHA levels were almost identical (Table 2). Thus, the elevated F-DHA/F-ASA ratio would suggest the presence of oxidant stress in the plasma (Fig 5). However, while the intracellular F-DHA/F-ASA ratio likely reflects intracellular oxidant stress, the tilting of this ratio toward oxidation in plasma appears to be strongly influenced by the massive urinary loss of F-ASA (Fig

7). Therefore, one cannot interpret the increased F-DHA/F-ASA plasma ratio as necessarily reflecting increased oxidative activity in the plasma, although the loss of plasma F-ASA would contribute toward weakening of the total free radical trapping activity of the plasma. Indeed studies have shown that plasma ASA is a contributor to total human and rat plasma antioxidant status in the total radical-trapping antioxidant potential (TRAP) assay.<sup>37,38</sup>


A major finding in this study is that none of the many F-ASA advanced degradation compounds that were observed during in vitro metal catalyzed oxidation or during spontaneous degradation in the urine (Fig 6) were detected in plasma or the tissues assayed in this study. In both normal and diabetic rats, tissue total F-vitamin C was almost entirely in form of F-ASA and F-DHA. In 3 tissues, ie, liver, brain, and adrenal glands, more than 80% of F-compounds were present in reduced form in both normal and diabetic rat (Fig 5), and both brain and adrenal glands were highly resistant toward oxidation in diabetes. Similar data were found in brain and liver by Kashiba et al.<sup>35</sup> In contrast, even in the absence of diabetes, baseline oxidation activity as reflected by F-DHA levels was much higher in heart, kidney, and spleen than liver, brain, and adrenal glands. No comparative data on this relationship could be found in the literature.

There may be various reasons why some tissues have higher levels of oxidized ASA and are more or less susceptible to the effects of hyperglycemia. These include increased oxidation by redox active metal copper complexes,<sup>39-41</sup> redox active methylglyoxal protein adducts,<sup>42</sup> increased oxidation by mitochondria-derived superoxide radicals,<sup>43</sup> increased F-ASA oxidation by peroxynitrite radical,<sup>44</sup> and decreased antioxidant defenses. Evidence for the presence of redox active metal complexes has been described in human lenses and arteries from normal or diabetic human and monkey<sup>39,45,46</sup> peritoneal fluid<sup>25</sup> and plasma from humans with ESRD.<sup>47</sup> However, in diabetic humans without ESRD, there is no evidence for a net increase in metal or nonmetal catalyzed oxidation in plasma and extracellular fluid as reflected by, eg, methionine oxidation or plasma CML.<sup>25,48</sup> As discussed above, the most likely explanation for the low plasma levels of F-ASA in diabetic rats appears to be renal loss.

One of the main protective mechanisms responsible for keeping ASA in reduced form is glutathione (GSH). In diabetic rats, GSH is easily depleted from lens, red blood cells, nerves, and kidney and is more oxidized in the heart,<sup>49-52</sup> although no



**Fig 7.** Comparative quantitative analysis of F-ASA and its degradation products in the urine collected from normal and diabetic rats for 24 hours after the last injection. \* $P < .05$  with normal rat urine.



**Fig 8.** The  $^{19}\text{F}$ -NMR spectra of F-ASA (1 mmol/L) incubated in urine of normal rat at 37°C for 24 hours to mimick potential F-ASA degradation in stagnant urine.

change in kidney, brain, and heart were observed by Rausher et al.<sup>53</sup> Thus, loss of GSH may be an important contributory factor for the increased oxidant stress in diabetes that is reflected in the increased F-DHA/F-ASA ratio.

Finally, individual differences in uptake capacity and retention of ASA may adversely affect the F-ASA/F-DHA tissue ratio. The highest F-ASA concentration was found in adrenal glands,<sup>32,54</sup> whereby the F-ASA level in adrenal glands from diabetic rats was surprisingly more than twice higher than in normal rat. This finding may reflect the relatively higher dose of injected F-ASA per unit of body weight, since F-ASA values were half as high when the doses were decreased by 50% (not shown). This tissue, however, must have a very high-affinity transport system because ASA levels were normal despite a 50% lower plasma level in diabetic compared with normal rats. Indeed, the presence of the SVCT-2 transporter was reported in adrenal glands.<sup>55</sup> Thus, it may be that there is a compensatory mechanism that protects adrenal glands from oxidative stress due to hyperglycemia.

As discussed previously, hyperglycemia might inhibit DHA uptake via competitive inhibition of GLUT1 and GLUT3.<sup>56</sup> This, however, is not expected to be an issue in this study, because F-DHA is apparently not taken up by these transporters. Nevertheless, some inhibition of F-ASA uptake may have occurred based in Ngkekewong's findings that ASA transport into lymphoblasts was inhibited at  $\text{km}$  of 20 mmol/L glucose, while mean glucose concentration in our rats was 21 mmol/L on the average. Does this mean there is another ASA transporter or simply a downregulation of SVCT-2 in diabetes?

One peculiar finding was the extreme decrease in the weight of the spleen and the heart of diabetic rats. This finding has, to our knowledge, not been previously reported. While the heart weight is known to correlate with body weight, the low weight of the spleen in experimental diabetes has not been reported. The dramatic decrease in tissue weight together with the increased F-DHA/F-ASA ratio is compatible with an increase in free radical-mediated apoptosis in this tissue,<sup>57</sup> possibly due to mitochondrial superoxide formation.<sup>43</sup> One triggering factor could be an increase in ACTH leading to corticosterone-induced apoptosis of lymphocytes.<sup>58,59</sup>

Except for F-DHA and F-DKG, the chemical nature and tissue origin of most degradation compounds found in the urine remains to be established. Previous studies by others on ASA catabolism using  $1-^{14}\text{C}$ -ASA showed that oxalate, ascorbate-2-sulfate,<sup>60,61</sup> and 2-O-methylascorbic acid<sup>62</sup> could be recovered

in the urine. However, most of these compounds were minor, and mainly  $1-^{14}\text{C}$ -ASA was excreted in the urine. In contrast, in our study the concentration of F-2 was much higher than that of F-ASA. While this study was in progress, Ortwerth et al<sup>15</sup> have used deuterated ascorbic acid and reported the formation of erythrulose as the major degradation product of ascorbic acid under nonoxidative conditions. It may well be that the major peak at  $-212.45$  is identical to F-erythrulose<sup>15</sup> (Fig 8) and corresponds to F3 (Fig 6). If so, however, it is clear that F-erythrulose is but one of many degradation products of ascorbic acid *in vivo*. Other F-compounds present in the urine could include F-erythritol or F-erythronic acid, both of which are known to occur in urine.<sup>63</sup>

A prominent finding in this study is the rapid urinary loss of F-ASA. At 24 hours, 40% of injected F-ASA appeared in the urine from DB rats, while only 18% was excreted by the normal rat. Urinary volume of diabetic rats was on the average 6.25-fold than from the control rats. The single major reason for the loss would thus appear to be increased filtration, most likely coupled with a decreased tubular reuptake of F-ASA. Quantitation of the sodium-dependent ASA transporters in proximal renal tubules will be needed to clarify the extent to which saturation of these receptors has occurred. The latter hypothesis would appear less likely, because total F-ASA level in plasma, kidney, and spleen was much lower in diabetic than in normal rats, suggesting that F-ASA level in diabetic rats did not reach the saturation limit.

In summary, this study demonstrates that F-ASA is a very powerful tool for the clarification of the ascorbic acid homeostasis and catabolism *in vivo* and suggests that increased clearance of F-ASA is a major reason for the loss in plasma levels found in diabetes. While some tissues, such as brain and adrenal glands are able to preserve ascorbic acid in reduced form, accelerated ascorbic acid oxidation is apparent in kidney, spleen, heart, and liver. Surprisingly, except for the lens,<sup>34</sup> advanced ascorbic acid degradation products are found only in the urine, suggesting once formed they are rapidly eliminated from the tissue or possibly bound to protein, eluding thus detection.

#### ACKNOWLEDGMENT

The authors thank the Kresge Foundation and the donors to the Kresge Challenge at the University of Akron for funds needed to purchase the NMR instrument used in this study; and Drs Miriam Weiss and Fred Tessier for critical reading of the manuscript.

## REFERENCES

- Watkins SM, German JB: Toward the implementation of metabolomic assessments of human health and nutrition. *Curr Opin Biotechnol* 13:512-516, 2002
- Fiehn O: Metabolomics—The link between genotypes and phenotypes. *Plant Mol Biol* 48:155-71, 2002
- Reo NV: NMR-based metabolomics. *Drug Chem Toxicol* 25:375-378, 2002
- Niki E, Saito T, Kamiya Y: The role of vitamin C as an antioxidant. *Chem Lett* 631-632, 1983
- Dandonia P, Thusu K, Cook S, et al: Oxidative damage to DNA in diabetes mellitus. *Lancet* 347:444-445, 1996
- Low PA, Nickander KK, Tritschler HJ: The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. *Diabetes* 46:S38-42, 1997 (suppl 2)
- Will JC, Byers T: Does diabetes mellitus increase the requirement for vitamin C? *Nutr Rev* 54:193-202, 1996
- Sinclair AJ, Girling AJ, Gray L, et al: Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. *Diabetologia* 34:171-175, 1991
- Levine M, Cantilena CC, Dhariwal KR: In situ kinetics and ascorbic acid requirements. *World Rev Nutr Diet* 72:114-127, 1993
- Young IS, Torney JJ, Trimble ER: The effect of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. *Free Radic Biol Med* 13:41-46, 1992
- Levine M, Daruwala RC, Park JB, et al: Does vitamin C have a pro-oxidant effect? *Nature* 395:231, 1998 (discussion 232)
- Koshiishi I, Mamura Y, Liu J, et al: Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation. *Biochim Biophys Acta* 1425:209-214, 1998
- Bode AM, Cunningham L, Rose RC: Spontaneous decay of oxidized ascorbic acid (dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. *Clin Chem* 36:1807-1809, 1990
- Shin DB, Feather MS: 3-Deoxy-L-glycero-pentos-2-ulose (3-deoxy-L-xylosone) and L-threo-pentos-2-ulose (L-xylosone) as intermediates in the degradation of L-ascorbic acid. *Carbohydr Res* 208:246-250, 1990
- Simpson GL, Ortwerth BJ: The non-oxidative degradation of ascorbic acid at physiological conditions. *Biochim Biophys Acta* 1501:12-24, 2000
- Dunn JA, Ahmed MU, Murtiashaw MH, et al: Reaction of ascorbate with lysine and protein under autoxidizing conditions: Formation of N epsilon-(carboxymethyl)lysine by reaction between lysine and products of autoxidation of ascorbate. *Biochemistry* 29:10964-10970, 1990
- Ortwerth BJ, James H, Simpson G, et al: The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. *Biochem Biophys Res Commun* 245:161-165, 1998
- Nagaraj RH, Monnier VM: Isolation and characterization of a blue fluorophore from human eye lens crystallins: In vitro formation from Maillard reaction with ascorbate and ribose. *Biochim Biophys Acta* 1116:34-42, 1992
- Nagaraj RH, Sell DR, Prabhakaram M, et al: High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. *Proc Natl Acad Sci USA* 88:10257-10261, 1991
- Ahmed MU, Thorpe SR, Baynes JW: Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. *J Biol Chem* 261:4889-4894, 1986
- Tessier F, Obrenovich M, Monnier VM: Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vespertolysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. *J Biol Chem* 274:20796-20804, 1999
- Nagaraj RH, Shamsi FA, Huber B, et al: Immunochemical detection of oxalate monoalkylamide, an ascorbate-derived Maillard reaction product in the human lens. *FEBS Lett* 453:327-330, 1999
- Organisciak DT, Wang HM, Kou AL: Ascorbate and glutathione levels in the developing normal and dystrophic rat retina: Effect of intense light exposure. *Curr Eye Res* 3:257-267, 1984
- Tso MO, Woodford BJ, Lam KW: Distribution of ascorbate in normal primate retina and after photic injury: A biochemical, morphological correlated study. *Curr Eye Res* 3:181-191, 1984
- Weiss MF, Erhard P, Kader-Attia FA, et al: Mechanisms for the formation of glycoxidation products in end-stage renal disease. *Kidney Int* 57:2571-2585, 2000
- Himmelreich U, Kuchel PW: <sup>13</sup>C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes. *Eur J Biochem* 246:638-645, 1997
- Madaj J, Nishikawa Y, Reddy VP, et al: 6-Deoxy-6-fluoro-L-ascorbic acid: Crystal structure and oxidative degradation. *Carbohydr Res* 329:477-485, 2000
- Kagawa Y: Enzymatic studies on ascorbic acid catabolism in animals: T catabolism of 2,3-diketo-L-gulonic acid. *J Biochem* 51:134-144, 1962
- Otsuka M, Kurata T, Arakawa N: Isolation and characterization of an intermediate product in the degradation of 2,3-diketo-L-gulonic acid. *Agric Biol Chem* 50:531-533, 1986
- Sapper H, Kang SO, Paul HH, et al: The reversibility of the vitamin C redox system: Electrochemical reasons and biological aspects. *Z Naturforsch [C]* 37:942-946, 1982
- Yue DK, McLennan S, Fisher E, et al: Ascorbic acid metabolism and polyol pathway in diabetes. *Diabetes* 38:257-261, 1989
- Hornig D, Weber F, Wiss O: Autoradiographic distribution of (1-<sup>14</sup>C) ascorbic acid and (1-<sup>14</sup>C) dehydroascorbic acid in male guinea pigs after intravenous injection. *Int J Vitam Nutr Res* 42:223-241, 1972
- Rumsey SC, Welch RW, Garraffo HM, et al: Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I] 6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties. *J Biol Chem* 274:23215-23222, 1999
- Satake M, Dmochowska B, Nishikawa Y, et al: Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high resolution <sup>19</sup>F-NMR spectroscopy. *Invest Ophthalmol Vis Sci* (in press)
- Kashiba M, Oka J, Ichikawa R, et al: Impaired reductive regeneration of ascorbic acid in the Goto-Kakizaki diabetic rat. *Biochem J* 351:313-318, 2000
- Lindsay RM, Jamieson NS, Walker SA, et al: Tissue ascorbic acid and polyol pathway metabolism in experimental diabetes. *Diabetologia* 41:516-523, 1998
- Wayner DD, Burton GW, Ingold KU, et al: The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. *Biochim Biophys Acta* 924:408-419, 1987
- Asayama K, Uchida N, Nakane T, et al: Antioxidants in the serum of children with insulin-dependent diabetes mellitus. *Free Radic Biol Med* 15:597-602, 1993
- Saxena P, Saxena AK, Cui XL, et al: Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: Possible role of advanced glycation end products. *Invest Ophthalmol Vis Sci* 41:1473-481, 2000
- Requena JR, Groth D, Legname G, et al: Copper-catalyzed oxidation of the recombinant SHa(29-231) prion protein. *Proc Natl Acad Sci USA* 98:7170-7175, 2001
- Qian M, Liu M, Eaton JW: Transition metals bind to glycated proteins forming redox active "glycochelates": Implications for the

pathogenesis of certain diabetic complications. *Biochem Biophys Res Commun* 250:385-389, 1998

42. Lee C, Yim MB, Chock PB, et al: Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. *J Biol Chem* 273:25272-25278, 1998

43. Nishikawa T, Edelstein D, Du XL, et al: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. *Nature* 404:787-790, 2000

44. Squadrito GL, Jin X, Pryor WA: Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite. *Arch Biochem Biophys* 322:53-59, 1995

45. Smith C, Hutchinson MJ, Aruoma OI, et al: Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. *Biochem J* 286:901-905, 1992

46. Monnier VM: Transition metals redox: Reviving an old plot for diabetic vascular disease. *J Clin Invest* 107:799-801, 2001

47. Saxena AK, Saxena P, Wu X, et al: Protein aging by carboxy-methylation of lysines generates sites for divalent metal and redox active copper binding: Relevance to diseases of glycoxidative stress. *Biochem Biophys Res Commun* 260:332-338, 1999

48. Wells-Knecht MC, Lyons TJ, McCance DR, et al: Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. *J Clin Invest* 100:839-846, 1997

49. Mitton KP, Dzialoszynski T, Sanford SE, et al: Cysteine and ascorbate loss in the diabetic rat lens prior to hydration changes. *Curr Eye Res* 16:564-571, 1997

50. Slonim AE, Fletcher T, Burke V, et al: Effect of streptozotocin on red-blood-cell-reduced glutathione: Modification by glucose, nicotinamide, and epinephrine. *Diabetes* 25:216-222, 1976

51. Obrosova IG, Van Huyzen C, Fathallah L, et al: An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidant defense. *FASEB J* 16:123-125, 2002

52. de Cavanagh EM, Inserra F, Ferder L, et al: Enalapril and captopril enhance glutathione-dependent antioxidant defenses in mouse tissues. *Am J Physiol* 278:R572-577, 2000

53. Rauscher FM, Sanders RA, Watkins JB III: Effects of isoeugenol on oxidative stress pathways in normal and streptozotocin-induced diabetic rats. *J Biochem Mol Toxicol* 15:159-164, 2001

54. Seib PA, Tolbert BM: Ascorbic Acid: Chemistry, Metabolism, and Uses. Washington, DC, American Chemical Society, 1982, pp 293-316

55. Tsukaguchi H, Tokui T, Mackenzie B, et al: A family of mammalian Na<sup>+</sup>-dependent L-ascorbic acid transporters. *Nature* 399:70-75, 1999

56. Ngkek Wong FC, Ng LL: Two distinct uptake mechanisms for ascorbate and dehydroascorbate in human lymphoblasts and their interaction with glucose. *Biochem J* 324:225-230, 1997

57. Slater AF, Nobel CS, Orrenius S: The role of intracellular oxidants in apoptosis. *Biochim Biophys Acta* 1271:59-62, 1995

58. Takao T, Tojo C, Nishioka T, et al: Increased adrenocorticotropin responses to acute stress in Otsuka Long-Evans Tokushima Fatty (type 2 diabetic) rats. *Brain Res* 852:110-115, 2000

59. Hirano T, Horigome H, Ishishita H, et al: Oxidized glucocorticoids counteract glucocorticoid-induced apoptosis in murine thymocytes in vitro. *Life Sci* 68:2905-2916, 2001

60. Tolbert BM, Downing M, Carlson RW, et al: Chemistry and metabolism of ascorbic acid and ascorbate sulfate. *Ann N Y Acad Sci* 258:48-69, 1975

61. Baker EM, Saari JC, Tolbert BM: Ascorbic acid metabolism in man. *Am J Clin Nutr* 19:371-378, 1966

62. Tolbert BM, Harkrader RJ, Johnson DO, et al: C-6 oxidation of ascorbic acid: A major metabolic process in animals. *Biochem Biophys Res Commun* 71:1004-1009, 1976

63. Bultitude FW, Newham SJ: Identification of some abnormal metabolites in plasma from uremic subjects. *Clin Chem* 21:1329-1334, 1975